• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ping, Xu (Ping, Xu.) | Yang, Fubin (Yang, Fubin.) | Zhang, Hongguang (Zhang, Hongguang.) | Xing, Chengda (Xing, Chengda.) | Zhang, Wujie (Zhang, Wujie.) | Wang, Yan (Wang, Yan.) | Yao, Baofeng (Yao, Baofeng.)

收录:

EI Scopus SCIE

摘要:

Organic Rankine cycle (ORC) can effectively utilize the waste heat energy of internal combustion (IC) engine. The ORC system has obvious large time-varying characteristic, strong fluctuation, and hysteresis under the synergistic influence of frequent fluctuation of vehicle speed and operating parameters in the system. The power system, waste heat recovery system, transmission system, and other subsystem models are constructed in this study. The key components are verified. An integrated system model of IC engine-ORC for driving cycle is constructed on the basis of the subsystem model. The dynamic response of ORC system is evaluated under different road conditions. The synergistic influence of multiple variables on system performance is analyzed. Obvious strong coupling and nonlinear characteristics are observed among different performances of ORC system under road conditions. Therefore, a multi-objective cooperative optimization framework of ORC system considering actual road conditions is proposed on the basis of multidimensional data. In the process of collaborative optimization, thermal efficiency and emissions of CO2 equivalent show a clear trade-off under different road conditions. The limit value of thermal efficiency under new European driving cycle is also 6.48% higher than that under worldwide harmonized light vehicles test cycle. Frequent fluctuation of vehicle speed is not conducive to obtaining the limit value of thermal efficiency. The evaluation and optimization of the comprehensive performance of ORC system under complex road conditions can provide a reference for the practical application of vehicle ORC system.

关键词:

Vehicle engine Multi -objective optimization Organic Rankine cycle Dynamic response Driving cycles

作者机构:

  • [ 1 ] [Ping, Xu]Beijing Univ Technol, Fac Environm & Life, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 2 ] [Yang, Fubin]Beijing Univ Technol, Fac Environm & Life, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Hongguang]Beijing Univ Technol, Fac Environm & Life, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 4 ] [Xing, Chengda]Beijing Univ Technol, Fac Environm & Life, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Wujie]Beijing Univ Technol, Fac Environm & Life, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 6 ] [Wang, Yan]Beijing Univ Technol, Fac Environm & Life, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 7 ] [Yao, Baofeng]Beijing Univ Technol, Fac Environm & Life, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

通讯作者信息:

  • [Yang, Fubin]Beijing Univ Technol, Fac Environm & Life, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENERGY

ISSN: 0360-5442

年份: 2023

卷: 263

9 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次: 27

SCOPUS被引频次: 30

ESI高被引论文在榜: 2 展开所有

  • 2023-7
  • 2023-5

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:1687/4282112
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司