• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chang, Ke (Chang, Ke.) | Ji, Changwei (Ji, Changwei.) (学者:纪常伟) | Wang, Shuofeng (Wang, Shuofeng.) | Yang, Jinxin (Yang, Jinxin.) | Wang, Huaiyu (Wang, Huaiyu.) | Meng, Hao (Meng, Hao.) | Liu, Dianqing (Liu, Dianqing.)

收录:

EI Scopus SCIE

摘要:

In this study, a double spark plugs direct injection rotary engine is used to investigate the effects of synchronous and asynchronous changes of ignition timing on combustion and emission performance. The three-dimensional dynamic model was established by CONVERGE software and validated by the experimental data. The results indicate that setting the fuel injector toward the spark plug can reduce the fuel distribution at the tail of the combustion chamber, and the in-cylinder mixture inhomogeneity index gradually increases with the advance of the ignition timing. Compared with the synchronous change of ignition timing, advancing the ignition timing of the tailing spark plug can promote the combustion process. When the ignition timing of the leading spark plug is too early, the flame front will be irregular. With the advance of ignition timing, CA 0-10 corresponding to synchronous and asynchronous change all gradually increase, and the change of CA 10-90 is more stable than that of CA 0-10. Whether the ignition timing is changed synchronously or asynchronously, with the advance of the ignition time, the in-cylinder pressure shows an upward trend. The mean in-cylinder pressure corresponding to the synchronous change with the same change amplitude is slightly higher than that of asynchronous change. The peak pressure of 16.4% higher than that of the original engine can be obtained by adopting the ignition strategy of the synchronous advance of 30 degrees CA. Under this ignition strategy, the temperature and NOx mole fraction in the combustion chamber are all the lowest.

关键词:

Double spark plugs Ignition timing Direct injection Synchronous and asynchronous

作者机构:

  • [ 1 ] [Chang, Ke]Beijing Univ Technol, Coll Energy & Power Engn, Beijing Lab New Energy Vehicles, Beijing 100124, Peoples R China
  • [ 2 ] [Ji, Changwei]Beijing Univ Technol, Coll Energy & Power Engn, Beijing Lab New Energy Vehicles, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Shuofeng]Beijing Univ Technol, Coll Energy & Power Engn, Beijing Lab New Energy Vehicles, Beijing 100124, Peoples R China
  • [ 4 ] [Yang, Jinxin]Beijing Univ Technol, Coll Energy & Power Engn, Beijing Lab New Energy Vehicles, Beijing 100124, Peoples R China
  • [ 5 ] [Meng, Hao]Beijing Univ Technol, Coll Energy & Power Engn, Beijing Lab New Energy Vehicles, Beijing 100124, Peoples R China
  • [ 6 ] [Liu, Dianqing]Beijing Univ Technol, Coll Energy & Power Engn, Beijing Lab New Energy Vehicles, Beijing 100124, Peoples R China
  • [ 7 ] [Chang, Ke]Beijing Univ Technol, Key Lab Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 8 ] [Ji, Changwei]Beijing Univ Technol, Key Lab Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 9 ] [Wang, Shuofeng]Beijing Univ Technol, Key Lab Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 10 ] [Yang, Jinxin]Beijing Univ Technol, Key Lab Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 11 ] [Meng, Hao]Beijing Univ Technol, Key Lab Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 12 ] [Liu, Dianqing]Beijing Univ Technol, Key Lab Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 13 ] [Wang, Huaiyu]Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China
  • [ 14 ] [Wang, Huaiyu]Beijing Inst Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China

通讯作者信息:

  • [Ji, Changwei]Beijing Univ Technol, Coll Energy & Power Engn, Beijing Lab New Energy Vehicles, Beijing 100124, Peoples R China;;[Ji, Changwei]Beijing Univ Technol, Key Lab Reg Air Pollut Control, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENERGY

ISSN: 0360-5442

年份: 2023

卷: 268

9 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:251/4429347
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司