收录:
摘要:
Three-dimensional human pose estimation is a hot research topic in the field of computer vision. Aimed at the lack of labels in depth images and the low generalization ability of models caused by single human pose, this paper innovatively proposes a method of 3D human pose estimation based on multi-source image weakly-supervised learning. This method mainly includes the following points. First, multi-source image fusion training method is used to improve the generalization ability of the model. Second, weakly-supervised learning approach is proposed to solve the problem of label insufficiency. Third, in order to improve the attitude estimation results, this paper improve the design of the residual module. The experimental results show that the regression accuracy from our improved network increases by 0.2%, and meanwhile the training time reduces by 28% compared with the original network. In a word, the proposed method obtains excellent estimation results with both depth images and color images. © 2019, Editorial Board of JBUAA. All right reserved.
关键词:
通讯作者信息:
电子邮件地址: