• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Su, Yunlong (Su, Yunlong.) | Peng, Yongzhen (Peng, Yongzhen.) | Wang, Jiao (Wang, Jiao.) | Zhang, Qiong (Zhang, Qiong.) | Li, Xiyao (Li, Xiyao.) | Wang, Shuying (Wang, Shuying.) | Xue, Xiaofei (Xue, Xiaofei.) | Du, Rui (Du, Rui.)

收录:

EI Scopus SCIE

摘要:

The stable nitrite (NO2--N) generation and rapid startup of anammox-based process are the main bottlenecks hindering its application in mainstream municipal wastewater treatment. In this study, a Partial-Denitrification (PD) system re-ducing nitrate (NO3--N) to NO2--N was rapidly developed within 40 days, using the nitrification/denitrification sludge from wastewater treatment plant. The NO3--N to NO2--N transformation ratios achieved 80.6 %. Significantly, a fast self-enrichment of anammox bacteria in this system was subsequently obtained, resulting in the successful transforma-tion to an efficient PD/Anammox (PD/A) process after 79-day operation. The total nitrogen removal efficiency in-creased from 12.4 % to 90.0 % with influent ammonia and nitrate of 45.9 mg N/L and 62.2 mg N/L, corresponding to the anammox activity significantly increasing to 6.0 mgNH(4)(+)-N/g VSS/h without seeding anammox sludge. Abun-dance of anammox increased from 6.7 x 10(8) to 2.0 x 10(11) copies/g dry sludge. High-throughput sequencing results showed that Candidatus Brocadia was the only known anammox genus and accounted for 1.08 % during the PD/A stage. Functional bacteria for PD, assumed to be the Thauera, was enriched from 1.99 % to 60.06 % but decreased to 32.49 % during the improvement of anammox activity. It demonstrated that the PD system with stable NO2--N accumulation enabled a rapid self-enrichment of anammox bacteria and sufficient nitrogen removal with ordinary nitrification/denitrification sludge. This provides new insights into the scaling application of anammox by integrating PD with shortened startup periods and improved TN removal efficiency.

关键词:

Self-enrichment of anammox bacteria Mainstream municipal wastewater treatment Functional bacteria Nitrite accumulation Partial denitrification

作者机构:

  • [ 1 ] [Su, Yunlong]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 2 ] [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Jiao]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Qiong]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Xiyao]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 6 ] [Wang, Shuying]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 7 ] [Du, Rui]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 8 ] [Xue, Xiaofei]Beijing Enterprises Water Grp China Investment Lt, Beijing 100102, Peoples R China

通讯作者信息:

  • [Du, Rui]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

SCIENCE OF THE TOTAL ENVIRONMENT

ISSN: 0048-9697

年份: 2023

卷: 856

9 . 8 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:17

被引次数:

WoS核心集被引频次: 38

SCOPUS被引频次: 46

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

归属院系:

在线人数/总访问数:1151/4288165
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司