• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zuo, Guoyu (Zuo, Guoyu.) (学者:左国玉) | Tong, Jiayuan (Tong, Jiayuan.) | Liu, Hongxing (Liu, Hongxing.) | Chen, Wenbai (Chen, Wenbai.) | Li, Jianfeng (Li, Jianfeng.)

收录:

EI Scopus SCIE

摘要:

To grasp the target object stably and orderly in the object-stacking scenes, it is important for the robot to reason the relationships between objects and obtain intelligent manipulation order for more advanced interaction between the robot and the environment. This paper proposes a novel graph-based visual manipulation relationship reasoning network (GVMRN) that directly outputs object relationships and manipulation order. The GVMRN model first extracts features and detects objects from RGB images, and then adopts graph convolutional network (GCN) to collect contextual information between objects. To improve the efficiency of relation reasoning, a relationship filtering network is built to reduce object pairs before reasoning. The experiments on the Visual Manipulation Relationship Dataset (VMRD) show that our model significantly outperforms previous methods on reasoning object relationships in object-stacking scenes. The GVMRN model is also tested on the images we collected and applied on the robot grasping platform. The results demonstrated the generalization and applicability of our method in real environment.

关键词:

robotic manipulation graph convolution network relationship reasoning object-stacking scene grasping order

作者机构:

  • [ 1 ] [Zuo, Guoyu]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Tong, Jiayuan]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Liu, Hongxing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Zuo, Guoyu]Beijing Key Lab Comp Intelligence & Intelligent S, Beijing, Peoples R China
  • [ 5 ] [Tong, Jiayuan]Beijing Key Lab Comp Intelligence & Intelligent S, Beijing, Peoples R China
  • [ 6 ] [Liu, Hongxing]Beijing Key Lab Comp Intelligence & Intelligent S, Beijing, Peoples R China
  • [ 7 ] [Chen, Wenbai]Beijing Informat Sci & Technol Univ, Sch Automat, Beijing, Peoples R China
  • [ 8 ] [Li, Jianfeng]Beijing Univ Technol, Fac Mat & Mfg, Beijing, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

FRONTIERS IN NEUROROBOTICS

ISSN: 1662-5218

年份: 2021

卷: 15

3 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次: 11

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:280/4294834
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司