• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fang, Juan (Fang, Juan.) (学者:方娟) | Zhang, Jiaxing (Zhang, Jiaxing.) | Lu, Shuaibing (Lu, Shuaibing.) | Zhang, Di (Zhang, Di.) | Zhao, Hui (Zhao, Hui.) | Cui, Yuwen (Cui, Yuwen.)

收录:

EI Scopus SCIE

摘要:

For heterogeneous computing systems, various types of processor cores cause system performance degradation due to uneven load. In addition, the inability of multitasking to match the appropriate processor core is also an urgent problem. This article proposes a swarm intelligence task scheduling strategy based on the genetic algorithm (GA) for high-performance heterogeneous multicore processors. In order to avoid the falling into local optimal solutions, we employ an adaptive mutation and injection strategy in the algorithm design. This swarm intelligence solution detects the computing capacities of different cores by processing specified tasks beforehand, and then an appropriate solution will be explored by introducing an adaptive mutation GA. Our technique aims to execute various types of tasks on heterogeneous processing cores for optimal performance. Experimental results show that this scheduling strategy can reduce the additional overhead and improve parallel computing efficiency and system performance.

关键词:

Task analysis Genetic algorithms Statistics Processor scheduling Multicore processing Convergence Sociology

作者机构:

  • [ 1 ] [Fang, Juan]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Zhang, Jiaxing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Lu, Shuaibing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Zhang, Di]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Zhao, Hui]Univ North Texas, Dept Comp Sci & Engn, Denton, TX 76203 USA
  • [ 6 ] [Cui, Yuwen]Univ North Texas, Denton, TX 76203 USA

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE CONSUMER ELECTRONICS MAGAZINE

ISSN: 2162-2248

年份: 2022

期: 1

卷: 11

页码: 73-79

4 . 5

JCR@2022

4 . 5 0 0

JCR@2022

JCR分区:1

中科院分区:4

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:550/4955232
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司