• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Deng, Sinuo (Deng, Sinuo.) | Shi, Ge (Shi, Ge.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Xing, Lehao (Xing, Lehao.) | Hu, Wenjin (Hu, Wenjin.) | Zhang, Heng (Zhang, Heng.) | Xiang, Ye (Xiang, Ye.)

收录:

CPCI-S EI Scopus

摘要:

Image emotion classification is an important computer vision task to extract emotions from images. The state-of-the-art methods for image emotion classification are primarily based on proposing new architectures and fine-tuning them on pre-trained Convolutional Neural Networks. Recently, learning transferable visual models from natural language supervision has shown great success in zero-shot settings due to the easily accessible web-scale training data, i.e., CLIP. In this paper, we present a conceptually simple while empirically powerful framework for supervised image emotion classification, SimEmotion, to effectively leverage the rich image and text semantics entailed in CLIP. Specifically, we propose a prompt-based fine-tuning strategy to learn task-specific representations while preserving knowledge contained in CLIP. As image emotion classification tasks lack text descriptions, sentiment-level concept and entity-level information are introduced to enrich text semantics, forming knowledgeable prompts and avoiding considerable bias introduced by fixed designed prompts, further improving the model's ability to distinguish emotion categories. Evaluations on four widely-used affective datasets, namely, Flickr and Instagram (FI), EmotionROI, Twitter I, and Twitter II, demonstrate that the proposed algorithm outperforms the state-of-the-art methods to a large margin (i.e., 5.27% absolute accuracy gain on FI) on image emotion classification tasks.

关键词:

Fine-tuning Prompt tuning Image emotion classification

作者机构:

  • [ 1 ] [Deng, Sinuo]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Shi, Ge]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Xing, Lehao]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Hu, Wenjin]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 6 ] [Zhang, Heng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 7 ] [Xiang, Ye]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT III

ISSN: 0302-9743

年份: 2022

页码: 222-229

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:482/4912364
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司