• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Honggui (Han, Honggui.) | Zhang, Jiacheng (Zhang, Jiacheng.) | Yang, Hongyan (Yang, Hongyan.) | Hou, Ying (Hou, Ying.) | Qiao, Junfei (Qiao, Junfei.)

收录:

EI Scopus SCIE

摘要:

Optimal control methods have attracted much attention for their promising performance in nonlinear systems. However, it is difficult to achieve satisfactory performance due to uncertain disturbances. To cope with this problem, a data-driven robust optimal control (DROC) method is proposed for uncertain nonlinear systems. The merits of the proposed DROC method are threefold: First, a data-driven evaluation strategy is introduced to cap-ture the relationship between the approximating errors and the control variables. Then, the control performance indexes of nonlinear systems can be established within uncertain disturbances. Second, a multi-objective robust optimization algorithm is developed with a coevolution strategy. Then, robust optimal control laws can be obtained to improve the control performance. Third, the robust boundedness of DROC is discussed in theory. Then, the stability of the control systems can be guaranteed analytically. Finally, the effec-tiveness of DROC is illustrated with two multiple input multiple output second-order non-linear systems. The optimal control performances are displayed in experiments to demonstrate the effectiveness of DROC.(c) 2022 Elsevier Inc. All rights reserved.

关键词:

Data-driven Multi-objective robust optimization Fuzzy neural network Evolutionary algorithms Robust optimal control

作者机构:

  • [ 1 ] [Han, Honggui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Jiacheng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Yang, Hongyan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Hou, Ying]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Han, Honggui]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 7 ] [Zhang, Jiacheng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 8 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
  • [ 9 ] [Han, Honggui]Beijing Univ Technol, Engn Res Ctr Digital Community, Minist Educ, Beijing 100124, Peoples R China
  • [ 10 ] [Yang, Hongyan]Beijing Univ Technol, Engn Res Ctr Digital Community, Minist Educ, Beijing 100124, Peoples R China
  • [ 11 ] [Hou, Ying]Beijing Univ Technol, Engn Res Ctr Digital Community, Minist Educ, Beijing 100124, Peoples R China

通讯作者信息:

  • [Han, Honggui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INFORMATION SCIENCES

ISSN: 0020-0255

年份: 2023

卷: 621

页码: 248-264

8 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 10

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:299/4534531
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司