• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Jianfeng (Li, Jianfeng.) (学者:李剑锋) | Zhang, Kai (Zhang, Kai.) | Zhang, Leiyu (Zhang, Leiyu.) | Zhang, Zikang (Zhang, Zikang.) | Zuo, Shiping (Zuo, Shiping.)

收录:

EI Scopus PKU CSCD

摘要:

The ankle rehabilitation exoskeleton is a critical equipment for foot drop and talipes valgus patients requiring extensive and repetitive rehabilitation training to make up deficiencies of the manual rehabilitation training and reduce the workload of rehabilitation physicians. According to the anatomical structure and motion characteristics of the ankle, an ankle rehabilitation robot with 2-UPS/RRR configuration has been proposed and developed which can realize the approximate coincidence between the centers of the ankle and the rehabilitation robot. Meanwhile, a force/torque information collection platform is constructed to improve the interactivity among the robot, patients and physicians. The kinematic model of this rehabilitation robot is established. The corresponding theoretical workspace is obtained through solving inverse kinematics. The physiological range of activity of the ankle is accurately measured in the whole movement area with the help of the 3-degree-of-freedom of the prototype. According to the autonomous motion of the prototype, the effective workspace is recorded and obtained. The effective workspace of the robot is less than the theoretical workspace. Furthermore, the results show that the percent of contact area in the effective workspace and the physiological range can reach 95% and the rehabilitation robot can provide enough space for the injured ankle. Finally, based on the velocity Jacobian matrix of the robot, the kinematic performance such as the maneuverability and dexterity is acquired. The results show that this rehabilitation robot has no singular position and processes good kinematic performance in the effective workspace. © 2019 Journal of Mechanical Engineering.

关键词:

Mechanisms Patient rehabilitation Inverse problems Exoskeleton (Robotics) Robots Physiology Jacobian matrices Machine design Inverse kinematics

作者机构:

  • [ 1 ] [Li, Jianfeng]College of Mechanical and Electrical Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zhang, Kai]College of Mechanical and Electrical Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Zhang, Leiyu]College of Mechanical and Electrical Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Zhang, Zikang]College of Mechanical and Electrical Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Zuo, Shiping]College of Mechanical and Electrical Engineering, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [zhang, leiyu]college of mechanical and electrical engineering, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Journal of Mechanical Engineering

ISSN: 0577-6686

年份: 2019

期: 9

卷: 55

页码: 29-39

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 18

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:1078/3849980
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司