• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

He, Ming (He, Ming.) | Zhang, Hanyu (Zhang, Hanyu.) | Wen, Han (Wen, Han.)

Indexed by:

CPCI-S EI Scopus

Abstract:

A knowledge graph (KG) has been widely adopted to improve recommendation performance. The multi-hop user-item connections in a KG can provide reasons for recommending an item to a user. However, existing methods do not effectively leverage the relations of entities and interpretable paths in a KG. To address this limitation, in this paper, we propose a novel recommendation framework called relation-enhanced knowledge graph reasoning for recommendation (RE-KGR) that combines recommendation and explainability by reasoning user-item interaction paths (UIIPs). First, instead of applying an alignment algorithm for preprocessing, RE-KGR directly learns the semantic representation of entities from structured knowledge by stacking relation-based convolutional layers to take full advantage of the KG. Moreover, RE-KGR infers user preferences by calculating the sum of all UIIPs between users and items. Finally, RE-KGR selects several UIIPs with the highest probabilities as possible reasons for the recommendations. Extensive experiments on three real-world datasets demonstrate that our proposed method significantly outperforms several state-of-the-art baselines and achieves superior performance and explainability.

Keyword:

Graph neural networks Recommender systems Knowledge graphs

Author Community:

  • [ 1 ] [He, Ming]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Zhang, Hanyu]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Wen, Han]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Related Article:

Source :

DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT III

ISSN: 0302-9743

Year: 2021

Volume: 12683

Page: 297-305

Cited Count:

WoS CC Cited Count: 1

SCOPUS Cited Count: 2

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:554/5274713
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.