• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Yingrui (Wang, Yingrui.) | Wang, Suyu (Wang, Suyu.) | Sun, Longhua (Sun, Longhua.)

收录:

CPCI-S EI Scopus

摘要:

Point clouds captured by 3D scanning are usually sparse and noisy. Reconstructing a high-resolution 3D model of an object is a challenging task in computer vision. Recent point cloud upsampling approaches aim to generate a dense point set, while achieving both distribution uniformity and proximity-to-surface directly via an end-to-end network. Although dense reconstruction from low to high resolution can be realized by using these techniques, it lacks abundant details for dense outputs. In this work, we propose a coarse-to-fine network PUGL-Net for point cloud reconstruction that first predicts a coarse high-resolution point cloud via a global dense reconstruction module and then increases the details by aggregating local point features. On the one hand, a transformer-based mechanism is designed in the global dense reconstruction module. It aggregates residual learning in a self-attention scheme for effective global feature extraction. On the other hand, the coordinate offset of points is learned in a local refinement module. It further refines the coarse points by aggregating KNN features. Evaluated through extensive quantitative and qualitative evaluation on synthetic data set, the proposed coarse-to-fine architecture generates point clouds that are accurate, uniform and dense, it outperforms most existing state-of-the-art point cloud reconstruction works.

关键词:

3D point cloud reconstruction Point cloud upsampling Coarse-to-fine Transformer

作者机构:

  • [ 1 ] [Wang, Yingrui]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Wang, Suyu]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Sun, Longhua]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

MULTIMEDIA MODELING (MMM 2022), PT I

ISSN: 0302-9743

年份: 2022

卷: 13141

页码: 467-478

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:427/4968596
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司