• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fu, Lihua (Fu, Lihua.) | Jiang, Hanxu (Jiang, Hanxu.) | Wu, Huixian (Wu, Huixian.) | Yan, Shaoxing (Yan, Shaoxing.) | Wang, Junxiang (Wang, Junxiang.) | Wang, Dan (Wang, Dan.) (学者:王丹)

收录:

EI Scopus SCIE

摘要:

Image super-resolution reconstruction is a research hotspot in the field of computer vision. Traditional image super-resolution reconstruction methods based on deep learning mostly up-sample low-resolution images ignoring categories and instances, which will cause some problems such as unrealistic texture in the reconstructed images or sawtooth phenomenon on the edge of instance. In this manuscript, we propose an image super-resolution reconstruction method based on instance spatial feature modulation and feedback mechanism. First, the prior knowledge of instance spatial features is introduced in the reconstruction process. Instance spatial features of low-resolution images are extracted to modulate super-resolution reconstruction features. Then, based on the feedback mechanism, the modulated low-resolution image features are iteratively optimized for the reconstruction results, so that the model can finally learn instance-level reconstruction ability. Experiments on COCO-2017 show that, compared with traditional deep learning-based image super-resolution reconstruction methods, the proposed method can obtain better image reconstruction results, and the reconstructed images have more realistic instance textures.

关键词:

Feedback network Back projection Instance spatial feature Modulator Super-resolution

作者机构:

  • [ 1 ] [Fu, Lihua]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Jiang, Hanxu]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Wu, Huixian]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Yan, Shaoxing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Wang, Junxiang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 6 ] [Wang, Dan]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Jiang, Hanxu]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China;;

查看成果更多字段

相关关键词:

相关文章:

来源 :

APPLIED INTELLIGENCE

ISSN: 0924-669X

年份: 2022

期: 1

卷: 53

页码: 601-615

5 . 3

JCR@2022

5 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:2

中科院分区:2

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 7

归属院系:

在线人数/总访问数:1232/4282713
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司