• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Ming (He, Ming.) | Li, Changshu (Li, Changshu.) | Hu, Xinlei (Hu, Xinlei.) | Chen, Xin (Chen, Xin.) | Wang, Jiwen (Wang, Jiwen.)

收录:

CPCI-S EI Scopus

摘要:

Popularity bias is a common problem in recommender systems. Existing research mainly tracks this problem by re-weighting training samples or leveraging a small fraction of unbiased data. However, the effect of popularity bias in user behavior data may lead to sacrifices in recommendation. In this paper, we exploit data bias from click behavior to derive popularity bias representation, and investigate how to mitigate its negative impact from a causal perspective. Motivated by causal effects, we propose a novel counterfactual inference framework named Mitigating Popularity Bias in Recommendation via Counterfactual Inference (MPCI), which enables us to capture the popularity bias as the direct causal effect of the prediction score, and we eliminate popularity bias by subtracting the direct popularity bias effect from the total causal effect. In this way, MPCI reduces popularity bias by decreasing the influence of popular items on model training. Extensive experiments on two real-world datasets demonstrate the superiority of our methods over some strong baselines and prove the effectiveness of mitigating popularity bias in recommender systems.

关键词:

Counterfactual inference Popularity bias Recommender system

作者机构:

  • [ 1 ] [He, Ming]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Li, Changshu]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Hu, Xinlei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Chen, Xin]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Wang, Jiwen]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT III

ISSN: 0302-9743

年份: 2022

页码: 377-388

被引次数:

WoS核心集被引频次: 8

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:635/4934076
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司