• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Lifang (Wu, Lifang.) | Zhang, Heng (Zhang, Heng.) | Shi, Ge (Shi, Ge.) | Deng, Sinuo (Deng, Sinuo.)

收录:

CPCI-S EI Scopus

摘要:

Visual sentiment is subjective and abstract, and it is very challenging to locate the sentiment features from images accurately. Some researchers devote themselves to extracting visual features but ignore the relation features. However, sentiment reaction is a comprehensive action of visual content, and regions may express different emotions and contribute to the image sentiment. This paper takes the abstract sentiment relation as the starting point and proposes the Weakly Supervised Interaction Discovery Network that couples detection and classification branch. Specifically, the first branch detects sentiment maps with the cross-spatial pooling strategy, which generates the representations of emotions. Then, we employ a stacked Graph Convolution Network to extract the interaction feature from the above features. The second branch utilizes both interaction and visual features for robust sentiment classification. Extensive experiments on six benchmark datasets demonstrate that the proposed method exceeds the state-of-the-art methods for image sentiment analysis.

关键词:

Graph convolution network Sentiment classification Visual sentiment analysis Convolutional neural networks

作者机构:

  • [ 1 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Zhang, Heng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Shi, Ge]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Deng, Sinuo]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

PATTERN RECOGNITION, ACPR 2021, PT I

ISSN: 0302-9743

年份: 2022

卷: 13188

页码: 501-512

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:502/4931259
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司