• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Yachao (Yang, Yachao.) | Sun, Yanfeng (Sun, Yanfeng.) (学者:孙艳丰) | Ju, Fujiao (Ju, Fujiao.) | Wang, Shaofan (Wang, Shaofan.) | Gao, Junbin (Gao, Junbin.) | Yin, Baocai (Yin, Baocai.)

收录:

EI Scopus SCIE

摘要:

Graph convolutional networks (GCNs) have become a popular tool for learning unstructured graph data due to their powerful learning ability. Many researchers have been interested in fusing topological structures and node features to extract the correlation information for classification tasks. However, it is inadequate to integrate the embedding from topology and feature spaces to gain the most correlated information. At the same time, most GCN-based methods assume that the topology graph or feature graph is compatible with the properties of GCNs, but this is usually not satisfied since meaningless, missing, or even unreal edges are very common in actual graphs. To obtain a more robust and accurate graph structure, we intend to construct an adaptive graph with topology and feature graphs. We propose Multi-graph Fusion Graph Convolutional Networks with pseudo-label supervision (MFGCN), which learn a connected embedding by fusing the multi-graphs and node features. We can obtain the final node embedding for semi-supervised node classification by propagating node features over multi-graphs. Furthermore, to alleviate the problem of labels missing in semi-supervised classification, a pseudo-label generation mechanism is proposed to generate more reliable pseudo-labels based on the similarity of node features. Extensive experiments on six benchmark datasets demonstrate the superiority of MFGCN over state-of-the-art classification methods.(c) 2022 Elsevier Ltd. All rights reserved.

关键词:

Pseudo -label supervision Graph convolutional networks Semi -supervised learning Node classification

作者机构:

  • [ 1 ] [Yang, Yachao]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Sun, Yanfeng]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Ju, Fujiao]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Shaofan]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 5 ] [Yin, Baocai]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 6 ] [Gao, Junbin]Univ Sydney, Univ Sydney Business Sch, Discipline Business Analyt, Sydney, NSW 2006, Australia

通讯作者信息:

  • [Sun, Yanfeng]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

NEURAL NETWORKS

ISSN: 0893-6080

年份: 2023

卷: 158

页码: 305-317

7 . 8 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次: 17

SCOPUS被引频次: 19

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:175/4570917
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司