Indexed by:
Abstract:
The construction of twin boundaries (TBs) in materials is a remarkable way of promoting their strength and ductility. However, the effects of TB orientation on the mechanical properties have not been reported experimentally so far. Using a state-of-the-art in situ tensile stage equipped in a transmission electron microscope, uniaxial tensile tests were performed on three single-crystalline Ni samples with TB parallel and perpendicular to the tensile direction and no TB. The results showed that the uniform tensile elongation strongly depends on TB, 120% for the perpendicular TB sample, 99% for the parallel TB sample, and only 55% for the no TB sample. In addition, dislocation interaction before reaching the perpendicular CTB contribute to cross-slip and dynamic formation of dislocation jogs, thereby improving strain hardening and resulting in a large uniform tensile elongation. (c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keyword:
Reprint Author's Address:
Email:
Source :
MATERIALS & DESIGN
ISSN: 0264-1275
Year: 2022
Volume: 219
8 . 4
JCR@2022
8 . 4 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:66
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: