• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Jinduo (Liu, Jinduo.) | Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠) | Xun, Guangxu (Xun, Guangxu.) | Zhang, Aidong (Zhang, Aidong.)

收录:

EI Scopus SCIE

摘要:

Inferring brain-effective connectivity networks from neuroimaging data has become a very hot topic in neuroinformatics and bioinformatics. In recent years, the search methods based on Bayesian network score have been greatly developed and become an emerging method for inferring effective connectivity. However, the previous score functions ignore the temporal information from functional magnetic resonance imaging (fMRI) series data and may not be able to determine all orientations in some cases. In this article, we propose a novel score function for inferring effective connectivity from fMRI data based on the conditional entropy and transfer entropy (TE) between brain regions. The new score employs the TE to capture the temporal information and can effectively infer connection directions between brain regions. Experimental results on both simulated and real-world data demonstrate the efficacy of our proposed score function.

关键词:

transfer entropy (TE) Data models Brain modeling Mathematical model Functional magnetic resonance imaging Indexes Markov processes Time series analysis brain network effective connectivity score function Bayesian network (BN)

作者机构:

  • [ 1 ] [Liu, Jinduo]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing Municipal Key Lab Multimedia & Intelligen, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Ji, Junzhong]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing Municipal Key Lab Multimedia & Intelligen, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Xun, Guangxu]Univ Virginia, Dept Comp Sci & Biomed Engn, Charlottesville, VA 22904 USA
  • [ 4 ] [Zhang, Aidong]Univ Virginia, Dept Comp Sci & Biomed Engn, Charlottesville, VA 22904 USA

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

ISSN: 2162-237X

年份: 2021

期: 10

卷: 33

页码: 5993-6006

1 0 . 4 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:273/4897967
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司