• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yuan, Ye (Yuan, Ye.) | Zhang, Yong (Zhang, Yong.) (学者:张勇) | Wang, Boyue (Wang, Boyue.) | Peng, Yuan (Peng, Yuan.) | Hu, Yongli (Hu, Yongli.) | Yin, Baocai (Yin, Baocai.)

收录:

EI Scopus SCIE

摘要:

The traffic data corrupted by noise and missing entries often lead to the poor performance of Intelligent Transportation Systems (ITS), such as the bad congestion prediction and route guidance. How to efficiently impute the traffic data is an urgent problem. As a classic deep learning method, Generative Adversarial Network (GAN) achieves remarkable success in image recovery fields, which opens up a new way for the traffic data imputation. In this paper, we propose a novel spatio-temporal GAN model for the traffic data imputation (STGAN). Firstly, we design the generative loss and center loss, which not only minimizes the reconstructed errors of the imputed entries, but also ensures each imputed entry and its neighbors conform to the local spatio-temporal distribution. Then, the discriminator uses the convolution neural network classifier to judge whether the imputed matrix conforms to the global spatio-temporal distribution. As for the network architecture of the generator, we introduce the skip-connection to keep all well preserved data unchanged, and employ the dilated convolution to capture the spatio-temporal correlation in the traffic data. The experimental results show that our proposed method obviously outperforms other competitive traffic data imputation methods.

关键词:

Generative adversarial networks Task analysis Data models Generators Image reconstruction Matrix decomposition traffic data imputation Data mining Correlation generative adversarial network

作者机构:

  • [ 1 ] [Yuan, Ye]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Yong]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Boyue]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 4 ] [Hu, Yongli]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 5 ] [Yin, Baocai]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 6 ] [Peng, Yuan]Taiji Co Ltd, China Elect Technol Grp, Beijing 100124, Peoples R China

通讯作者信息:

  • [Wang, Boyue]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON BIG DATA

ISSN: 2332-7790

年份: 2023

期: 1

卷: 9

页码: 200-211

7 . 2 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 27

SCOPUS被引频次: 25

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 13

归属院系:

在线人数/总访问数:142/4297873
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司