• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Honggui (Han, Honggui.) | Liu, Zheng (Liu, Zheng.) | Liu, Hongxu (Liu, Hongxu.) | Qiao, Junfei (Qiao, Junfei.) | Chen, C. L. Philip (Chen, C. L. Philip.)

收录:

EI Scopus SCIE

摘要:

The broad learning system (BLS) has been identified as an important research topic in machine learning. However, the typical BLS suffers from poor robustness for uncertainties because of its characteristic of the deterministic representation. To overcome this problem, a type-2 fuzzy BLS (FBLS) is designed and analyzed in this article. First, a group of interval type-2 fuzzy neurons was used to replace the feature neurons of BLS. Then, the representation of BLS can be improved to obtain good robustness. Second, a fuzzy pseudoinverse learning algorithm was designed to adjust the parameter of type-2 FBLS. Then, the proposed type-2 FBLS was able to maintain the fast computational nature of BLS. Third, a theoretical analysis on the convergence of type-2 FBLS was given to show the computational efficiency. Finally, some benchmark and practical problems were used to test the merits of type-2 FBLS. The experimental results indicated that the proposed type-2 FBLS can achieve outstanding performance.

关键词:

Uncertainty Robustness fuzzy pseudoinverse learning (FPL) algorithm Learning systems Broad learning system (BLS) Nonlinear systems interval type-2 fuzzy neuron Convergence robustness Neurons Standards

作者机构:

  • [ 1 ] [Han, Honggui]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Engn Res Ctr Digital Community,Minist Educ,Beijin, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Zheng]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Engn Res Ctr Digital Community,Minist Educ,Beijin, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Hongxu]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Engn Res Ctr Digital Community,Minist Educ,Beijin, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Engn Res Ctr Digital Community,Minist Educ,Beijin, Beijing 100124, Peoples R China
  • [ 5 ] [Han, Honggui]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 6 ] [Liu, Zheng]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 7 ] [Liu, Hongxu]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 8 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 9 ] [Chen, C. L. Philip]Univ Macau, Fac Sci & Technol, Macau 99999, Peoples R China
  • [ 10 ] [Chen, C. L. Philip]South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON CYBERNETICS

ISSN: 2168-2267

年份: 2021

期: 10

卷: 52

页码: 10352-10363

1 1 . 8 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 40

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:542/4955830
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司