• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Lei (Wang, Lei.) | Su, Zhong (Su, Zhong.) | Qiao, Junfei (Qiao, Junfei.) | Deng, Feng (Deng, Feng.)

收录:

EI Scopus SCIE

摘要:

Echo state network (ESN) refers to a popular recurrent neural network with a largely and randomly generated reservoir for its rapid learning ability. However, it is difficult to design a reservoir that matches a specific task. To solve the structure design of the reservoir, a pseudo-inverse decompositionbased self-organizing modular echo state (PDSM-ESN) is proposed. PDSM-ESN is constructed by growing-pruning method, where the error and condition number are used, respectively. Since the self-organizing process may negatively affect the learning speed, the pseudo-inverse decomposition is adopted to improve learning speed, which means the output weights are learned by an iterative incremental method. Meanwhile, to solve the ill-posed problem, the modular sub-reservoirs corresponding to the high condition number are pruned. Simulation results indicate that PDSM-ESN has better prediction performance and run-time complexity compared with the traditional ESN models. (c) 2021 Elsevier B.V. All rights reserved.

关键词:

Pseudo-inverse decomposition Structure design Ill-posed problem Self-organizing Echo state network

作者机构:

  • [ 1 ] [Wang, Lei]Beijing Informat Sci & Technol Univ, Sch Automat, Beijing 100192, Peoples R China
  • [ 2 ] [Su, Zhong]Beijing Informat Sci & Technol Univ, Sch Automat, Beijing 100192, Peoples R China
  • [ 3 ] [Deng, Feng]Beijing Informat Sci & Technol Univ, Sch Automat, Beijing 100192, Peoples R China
  • [ 4 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

APPLIED SOFT COMPUTING

ISSN: 1568-4946

年份: 2022

卷: 116

8 . 7

JCR@2022

8 . 7 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:46

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 19

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:143/4644066
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司