• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Peng, Haoran (Peng, Haoran.) | Guan, Yu (Guan, Yu.) | Li, Jianqiang (Li, Jianqiang.) | Xu, Xi (Xu, Xi.) | Wen, Pengceng (Wen, Pengceng.) | Yang, Jijiang (Yang, Jijiang.) | Jia, Yanhe (Jia, Yanhe.) | Xie, Xianghui (Xie, Xianghui.) | Li, Minglei (Li, Minglei.) | Wang, Xiaoman (Wang, Xiaoman.) | Xin, Yue (Xin, Yue.) | He, Yuzhu (He, Yuzhu.)

收录:

CPCI-S EI Scopus

摘要:

Hydronephrosis may lead to many potential diseases, and the diagnosis of hydronephrosis is time-consuming and laborious. To assist physicians in hydronephrosis diagnosis and treatment planning, an accurate and automatic kidney segmentation method is highly required in clinical practice. In recent years, deep convolutional neural networks such as Unet plays a key role in the field of image segmentation, but Unet itself cannot adjust the receptive field actively, which may result in poor attention to the characteristics of the segmented target. We propose an encoder-decoder network with weighted skip connections and the idea of hierarchical equal resolution that can manually control the receptive field. We evaluated our method by comparing it with various classical networks using a dataset of 1850 annotated images. The MPA of the model is 94.12 and the MIoU is 89.49, which outperformed other classical networks we compared to.

关键词:

B-ultrasound image ureteropelvic junction obstruction (UPJO) hydronephrosis renal ultrasound image encoder-decoder network

作者机构:

  • [ 1 ] [Peng, Haoran]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Guan, Yu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Jianqiang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Xu, Xi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Wen, Pengceng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Yang, Jijiang]Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
  • [ 7 ] [Jia, Yanhe]Beijng Informat Sci & Technol Univ, Sch Econ & Management, Beijing 100192, Peoples R China
  • [ 8 ] [Xie, Xianghui]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Beijing 100045, Peoples R China
  • [ 9 ] [Li, Minglei]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Beijing 100045, Peoples R China
  • [ 10 ] [Wang, Xiaoman]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Beijing 100045, Peoples R China
  • [ 11 ] [Xin, Yue]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Beijing 100045, Peoples R China
  • [ 12 ] [He, Yuzhu]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Beijing 100045, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC)

ISSN: 1062-922X

年份: 2021

页码: 1894-1899

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:1137/4286731
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司