• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Kunpeng (Zhang, Kunpeng.) | Feng, Xiaoliang (Feng, Xiaoliang.) | Jia, Ning (Jia, Ning.) | Zhao, Liang (Zhao, Liang.) | He, Zhengbing (He, Zhengbing.)

收录:

EI Scopus SCIE

摘要:

A Time Space Diagram (TSD) plays an important role in transportation research and practice due to its capability to exhibit traffic dynamics in time and space. Based on TSDs, this paper aims to reconstruct the traffic spatio-temporal state with the aid of Generative Adversarial Networks (GANs). By mining traffic state correlations and traffic pattern similarities between lanes with or without sufficient observations, the proposed Traffic State Reconstruction GAN (TSR-GAN) model can well estimate the traffic states for road segments with a strong learning capability. Specifically, the traffic states of lanes are converted to TSDs, in which the color represents the values of traffic variables (e.g., speed or density). The TSDs of lanes with or without sufficient data are utilized to train the proposed TSR-GAN model. The fine-tuned TSR-GAN model reconstructs traffic states for road segments with deficient sensor coverage by restoring the high-resolution TSD from its low-resolution observation. With trajectory datasets from Next Generation Simulation (NGSIM), this paper verifies the performance of the TSR-GAN model by estimating travel time via the reconstructed TSDs. Numerical results demonstrate that the proposed model possesses a desirable generalization and transferability, demonstrating the promise of reconstructing traffic states under various conditions. (c) 2021 Elsevier B.V. All rights reserved.

关键词:

Generative Adversarial Networks Traffic State Reconstruction Data Imputation Time Space Diagram

作者机构:

  • [ 1 ] [Zhang, Kunpeng]Henan Univ Technol, Coll Elect Engn, Zhengzhou, Peoples R China
  • [ 2 ] [Zhao, Liang]Henan Univ Technol, Coll Elect Engn, Zhengzhou, Peoples R China
  • [ 3 ] [Feng, Xiaoliang]Shanghai Dianji Univ, Sch Elect Engn, Shanghai, Peoples R China
  • [ 4 ] [Jia, Ning]Tianjin Univ, Coll Management & Econ, Inst Syst Engn, Tianjin, Peoples R China
  • [ 5 ] [He, Zhengbing]Beijing Univ Technol, Beijing Key Lab Traff Engn, Beijing, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS

ISSN: 0378-4371

年份: 2022

卷: 591

3 . 3

JCR@2022

3 . 3 0 0

JCR@2022

ESI学科: PHYSICS;

ESI高被引阀值:41

JCR分区:2

中科院分区:2

被引次数:

WoS核心集被引频次: 19

SCOPUS被引频次: 26

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:555/4953479
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司