• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Dongwei (Xu, Dongwei.) | Peng, Hang (Peng, Hang.) | Wei, Chenchen (Wei, Chenchen.) | Shang, Xuetian (Shang, Xuetian.) | Li, Haijian (Li, Haijian.)

收录:

EI Scopus SCIE

摘要:

Road traffic state estimation is an essential component of intelligent transportation systems (ITSs). However, road traffic state data collected by traffic detectors are often incomplete, which can cause problems across a variety of transportation applications, such as traffic state prediction and pattern recognition. We present GA-GAN (Graph Aggregate Generative Adversarial Network), consisting of graph sample and aggregate (GraphSAGE) and a generative adversarial network (GAN), to impute missing road traffic state data. Instead of using the original road network structure, which presents the spatial information to process a graph operation, we reconstruct the road network according to the correlation coefficients of road historical data. We utilize GraphSAGE to aggregate the temporal-spatial information from the neighbors of each road in the reconstructed road network. GAN is used to generate complete traffic state data from the extracted temporal-spatial information to achieve traffic state data imputation. To illustrate the efficient performance of the model, experiments are conducted on traffic data collected from California and Seattle, Washington, showing that the proposed model outperforms state-of-the-art methods.

关键词:

Generative adversarial networks graph network Data models Generators graph aggregate Correlation generative adversarial network Roads deep learning Detectors Training Traffic data imputation

作者机构:

  • [ 1 ] [Xu, Dongwei]Zhejiang Univ Technol, Dept Inst Cyberspace Secur, Hangzhou 311121, Peoples R China
  • [ 2 ] [Xu, Dongwei]Zhejiang Univ Technol, Coll Informat Engn, Hangzhou 311121, Peoples R China
  • [ 3 ] [Peng, Hang]Zhejiang Univ Technol, Inst Cyberspace Secur, Hangzhou 311121, Peoples R China
  • [ 4 ] [Wei, Chenchen]Zhejiang Univ Technol, Inst Cyberspace Secur, Hangzhou 311121, Peoples R China
  • [ 5 ] [Shang, Xuetian]Zhejiang Univ Technol, Inst Cyberspace Secur, Hangzhou 311121, Peoples R China
  • [ 6 ] [Li, Haijian]Zhejiang Univ Technol, Inst Cyberspace Secur, Hangzhou 311121, Peoples R China
  • [ 7 ] [Peng, Hang]Zhejiang Univ Technol, Dept Coll Informat Engn, Hangzhou 311121, Peoples R China
  • [ 8 ] [Wei, Chenchen]Zhejiang Univ Technol, Dept Coll Informat Engn, Hangzhou 311121, Peoples R China
  • [ 9 ] [Shang, Xuetian]Zhejiang Univ Technol, Dept Coll Informat Engn, Hangzhou 311121, Peoples R China
  • [ 10 ] [Li, Haijian]Zhejiang Univ Technol, Dept Coll Informat Engn, Hangzhou 311121, Peoples R China
  • [ 11 ] [Li, Haijian]Beijing Univ Technol, Beijing Key Lab Traff Engn, Beijing 100000, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

ISSN: 1524-9050

年份: 2021

期: 8

卷: 23

页码: 13084-13093

8 . 5 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次: 20

SCOPUS被引频次: 28

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:391/4921998
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司