收录:
摘要:
The performance of the existing target localization algorithms is not ideal in complex acoustic environment. In order to improve this problem, a novel target binaural sound localization algorithm is presented. First, the algorithm uses binaural spectral features as input of a time-frequency units selector based on deep learning. Then, to reduce the negative impact of the time-frequency unit belonging to noise on the localization accuracy, the selector is emploied to select the reliable time-frequency units from binaural input sound signal. At the same time, a Deep Neural Network (DNN)-based localization system maps the binaural cues of each time-frequency unit to the azimuth posterior probability. Finally, the target localization is completed according to the azimuth posterior probability belonging to the reliable time-frequency units. Experimental results show that the performance of the proposed algorithm is better than comparison algorithms and achieves a significant improvement in target localization accuracy in low Signal-to-Noise Ratio(SNR) and various reverberation environments, especially when there is noise similar to the target sound source. © 2019, Science Press. All right reserved.
关键词:
通讯作者信息:
电子邮件地址: