• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Jingcheng (Wang, Jingcheng.) | Zhang, Yong (Zhang, Yong.) (学者:张勇) | Wei, Yun (Wei, Yun.) | Hu, Yongli (Hu, Yongli.) | Piao, Xinglin (Piao, Xinglin.) | Yin, Baocai (Yin, Baocai.)

收录:

EI Scopus SCIE

摘要:

Metro passenger flow prediction is a strategically necessary demand in an intelligent transportation system to alleviate traffic pressure, coordinate operation schedules, and plan future constructions. Graph-based neural networks have been widely used in traffic flow prediction problems. Graph Convolutional Neural Networks (GCN) captures spatial features according to established connections but ignores the high-order relationships between stations and the travel patterns of passengers. In this paper, we utilize a novel representation to tackle this issue - hypergraph. A dynamic spatio-temporal hypergraph neural network to forecast passenger flow is proposed. In the prediction framework, the primary hypergraph is constructed from metro system topology and then extended with advanced hyperedges discovered from pedestrian travel patterns of multiple time spans. Furthermore, hypergraph convolution and spatio-temporal blocks are proposed to extract spatial and temporal features to achieve node-level prediction. Experiments on historical datasets of Beijing and Hangzhou validate the effectiveness of the proposed method, and superior performance of prediction accuracy is achieved compared with the state-of-the-arts.

关键词:

hypergraph Predictive models Public transportation graph neural network Convolution Metro flow prediction Graph neural networks Forecasting Neural networks Urban areas

作者机构:

  • [ 1 ] [Wang, Jingcheng]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Yong]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Hu, Yongli]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 4 ] [Yin, Baocai]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 5 ] [Wei, Yun]Beijing Urban Construct Design & Dev Grp 53 Co Lt, Beijing 100029, Peoples R China
  • [ 6 ] [Piao, Xinglin]Pengcheng Lab, Shenzhen 518055, Peoples R China
  • [ 7 ] [Piao, Xinglin]Peking Univ, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

ISSN: 1524-9050

年份: 2021

期: 12

卷: 22

页码: 7891-7903

8 . 5 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次: 98

SCOPUS被引频次: 129

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:162/4512869
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司