Indexed by:
Abstract:
User preference prediction is a task of learning user interests through user-item interactions. Most existing studies capture user interests based on historical behaviors without considering specific scenario information. However, the users may have special interests in these specific scenarios and sometimes user historical behaviors are limited. In this paper, we propose a Meta-Learned Specific Scenario Interest Network (Meta-SSIN) to predict user preference of target item by capturing specific scenario interests. Meta-SSIN uses multiple independent meta-learning modules to model historical behaviors in each scenario. The independent module can capture special interests based on limited behaviors. Experimental results on three datasets show that Meta-SSIN outperforms compared state-of-the-art methods.
Keyword:
Reprint Author's Address:
Email:
Source :
SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL
Year: 2021
Page: 1970-1974
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: