• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Huang, Dezhi (Huang, Dezhi.) | Yu, Gang (Yu, Gang.) | Zhang, Jian (Zhang, Jian.) | Tang, Jian (Tang, Jian.) | Su, Jian (Su, Jian.)

收录:

EI Scopus SCIE

摘要:

Remaining useful life (RUL) prediction of mechanical components is of high research value in the field of prognostics and health management (PHM). However, RUL prediction problems are completely challenging due to the complicacy of bearings' operating environment. In this paper, we transform the vibration acceleration signal collected by sensors into a time-frequency domain matrix through continuous wavelet transform (CWT) and then extract the features of the time-frequency domain matrix through the proposed multiscale residual convolutional neural network (MRCNN), which enables the model to extract more local and global features while constructing more accurate health indicators (HI). In order to highlight the degradation trend of mechanical components, the obtained health indicators are smoothed by exponential moving average (EMA). Finally, linear regression is exploited to predict the RUL of the bearing. Performance evaluations based on the public dataset PRONOSTIA demonstrate the effectiveness of our proposed algorithm, which is superior to existing data-driven algorithms in terms of prediction accuracy.

关键词:

作者机构:

  • [ 1 ] [Huang, Dezhi]Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
  • [ 2 ] [Zhang, Jian]Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
  • [ 3 ] [Su, Jian]Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
  • [ 4 ] [Yu, Gang]BGRIMM Technol Grp Co Ltd, Beijing 102600, Peoples R China
  • [ 5 ] [Tang, Jian]Beijing Univ Technol, Fac Informat Technol, Beijing 100024, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

WIRELESS COMMUNICATIONS & MOBILE COMPUTING

ISSN: 1530-8669

年份: 2022

卷: 2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:46

中科院分区:4

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:463/4958650
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司