• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Meng, Qingxuan (Meng, Qingxuan.) | Yan, Jianzhuo (Yan, Jianzhuo.)

收录:

EI Scopus

摘要:

Identifying and rectifying incomplete water quality data is of vital importance. A data cleaning method based on improved balanced iterative reducing and clustering using hierarchies (BIRCH) clustering algorithm is proposed. The clustering feature tree of water quality data is constructed and the cluster vector of the clustering feature tree is obtained by the agglomerative method. The optimal cluster number is determined according to the Bayesian Information Criterion and the nearest clustering ratio. The Pauta criterion is used to detect the global outlier and artificial neural network (ANN) is used to fill in outliers and missing values. Finally, the improved data cleaning method is applied to water quality monitoring data of Beijing wastewater treatment plant. The experimental results show that the data cleaning method can not only detect abnormal values and missing values accurately, but also normalise and complete missing data. Copyright © 2019 Inderscience Enterprises Ltd.

关键词:

Wastewater treatment Water quality Neural networks Trees (mathematics) Clustering algorithms Iterative methods Cleaning Statistics Hierarchical clustering Sewage treatment plants

作者机构:

  • [ 1 ] [Meng, Qingxuan]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, China
  • [ 2 ] [Yan, Jianzhuo]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, China

通讯作者信息:

  • [yan, jianzhuo]college of electronic information and control engineering, beijing university of technology, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

International Journal of Simulation and Process Modelling

ISSN: 1740-2123

年份: 2019

期: 5

卷: 14

页码: 442-451

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:1389/3896251
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司