• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Shuyi (Li, Shuyi.) | Zhang, Hengmin (Zhang, Hengmin.) | Ma, Ruijun (Ma, Ruijun.) | Zhou, Jianhang (Zhou, Jianhang.) | Wen, Jie (Wen, Jie.) | Zhang, Bob (Zhang, Bob.)

收录:

EI Scopus SCIE

摘要:

Linear discriminant analysis (LDA) as a classical supervised dimensionality reduction method has shown powerful capability in various image classification tasks. The purpose of LDA seeks an optimal linear transformation that maps the original data to a low-dimensional space. Inspired by the fact that the kernel trick can capture the nonlinear similarity of features, we propose a novel generalized distance constraint dubbed intra-class and inter-class kernel constraint (IIKC). The proposed IIKC explicitly models the category kernel distance and focuses on helping the original LDA capture more discriminant features in order to further improve the separability and magnitude difference between nearby data points. Our proposed method with IIKC aims to achieve maximum category separability by minimizing the intraclass kernel distances as well as maximizing the inter-class kernel distance, simultaneously. Extensive experimental results on six publicly available benchmark databases illustrate that the LDA-based methods embedded with the proposed IIKC significantly improve the discrimination ability and achieve a better classification performance than the original and state-of-the-art LDA algorithms.(c) 2022 Elsevier Ltd. All rights reserved.

关键词:

Image classification Kernel constraint Linear discriminant analysis Separability Intra-class and inter -class distance

作者机构:

  • [ 1 ] [Li, Shuyi]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Zhang, Hengmin]South China Agr Univ, Coll Engn, Guangzhou, Peoples R China
  • [ 3 ] [Ma, Ruijun]South China Agr Univ, Coll Engn, Guangzhou, Peoples R China
  • [ 4 ] [Zhou, Jianhang]South China Agr Univ, Coll Engn, Guangzhou, Peoples R China
  • [ 5 ] [Zhang, Bob]South China Agr Univ, Coll Engn, Guangzhou, Peoples R China
  • [ 6 ] [Wen, Jie]Harbin Inst Technol, Shenzhen Key Lab Visual Object Detect & Recognit, Shenzhen, Peoples R China

通讯作者信息:

  • [Zhang, Bob]South China Agr Univ, Coll Engn, Guangzhou, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

PATTERN RECOGNITION

ISSN: 0031-3203

年份: 2023

卷: 136

8 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次: 18

SCOPUS被引频次: 22

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:433/4509463
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司