收录:
摘要:
Metal organic frameworks (MOFs) have been extensively investigated in Li-S batteries owing to high surface area, adjustable structures and abundant catalytic sites. Nevertheless, the insulating nature of traditional MOFs render retarded kinetics of polysulfides conversion, leading to insufficient utilization of sulfur. In comparison, conductive MOFs (c-MOFs) show great potential for promoting polysulfides transformation due to superb electronic conductivity. In this work, a nickel-catecholates based c-MOF, NiHHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), is designed to regulate surface chemistry of self-supported carbon paper for advanced Li-S batteries. Taking advantage of the porous structure and high conductivity, the as-prepared Ni-HHTP is conducive to synergising strengthening the chemisorption of polysulfides and accelerating the reaction kinetics in Li-S batteries, significantly mitigating the polysulfides diffusion from the non-encapsulated sulfur cathode, therefore promoting polysulfides transformation in Li-S batteries. This work points out a promising modification strategy for developing advanced sulfur cathode in Li-S batteries. (C) 2021 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
JOURNAL OF ENERGY CHEMISTRY
ISSN: 2095-4956
年份: 2021
卷: 63
页码: 336-343
1 3 . 1 0 0
JCR@2022
ESI学科: CHEMISTRY;
ESI高被引阀值:96
JCR分区:1
归属院系: