• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Chen (Zhao, Chen.) | Gao, Zhipeng (Gao, Zhipeng.) | Wang, Qian (Wang, Qian.) | Xiao, Kaile (Xiao, Kaile.) | Mo, Zijia (Mo, Zijia.) | Deen, M. Jamal (Deen, M. Jamal.)

收录:

EI Scopus SCIE

摘要:

With the proliferation of smart devices and the Internet of Vehicles (IoV) technologies, intelligent fatigue detection has become one of the most-used methods in our daily driving. Data sharing among vehicles can be used to optimize fatigue detection models and ensure driving safety. However, data privacy issues hinder the sharing process. Besides, due to the limitation of communication and computing resources, it is difficult to carry out training and data transmission on vehicles. To tackle these challenges, we propose FedSup, a communication-efficient federated learning method for fatigue driving behaviors supervision. Inspired by the resources allocation mechanism in edge intelligence, FedSup dynamically optimizes the sharing model with tailored client-edge-cloud architecture and reduces communication overhead by a Bayesian Convolutional Neural Network (BCNN) data selection strategy. To improve the sharing model optimize efficiency, we further propose an asynchronous parameters aggregation algorithm to automatically adjust the mixing weight of each edge model parameter. Extensive experiments demonstrate that the FedSup method is suitable for IoV scenarios and outperforms related federated learning methods in terms of communication overhead and model accuracy. (C) 2022 Elsevier B.V. All rights reserved.

关键词:

Internet of Vehicles Bayesian Convolutional Neural Networks Machine learning Federated learning Fatigue detection Uncertainty analysis

作者机构:

  • [ 1 ] [Zhao, Chen]Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
  • [ 2 ] [Gao, Zhipeng]Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
  • [ 3 ] [Xiao, Kaile]Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
  • [ 4 ] [Mo, Zijia]Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
  • [ 5 ] [Wang, Qian]Beijing Univ Technol, Coll Comp Sci, Beijing 100083, Peoples R China
  • [ 6 ] [Deen, M. Jamal]McMaster Univ, Elect & Comp Engn, 1280 Main St West, Hamilton, ON, Canada

通讯作者信息:

  • [Gao, Zhipeng]Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE

ISSN: 0167-739X

年份: 2023

卷: 138

页码: 52-60

7 . 5 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:726/5060694
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司