• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wei, Zhihao (Wei, Zhihao.) | Jia, Kebin (Jia, Kebin.) (学者:贾克斌) | Jia, Xiaowei (Jia, Xiaowei.) | Liu, Pengyu (Liu, Pengyu.) | Ma, Ying (Ma, Ying.) | Chen, Ting (Chen, Ting.) | Feng, Guilian (Feng, Guilian.)

收录:

EI Scopus SCIE

摘要:

Monitoring the extent of plateau forests has drawn much attention from governments given the fact that the plateau forests play a key role in global carbon circulation. Despite the recent advances in the remote-sensing applications of satellite imagery over large regions, accurate mapping of plateau forest remains challenging due to limited ground truth information and high uncertainties in their spatial distribution. In this paper, we aim to generate a better segmentation map for plateau forests using high-resolution satellite imagery with limited ground-truth data. We present the first 2 m spatial resolution large-scale plateau forest dataset of Sanjiangyuan National Nature Reserve, including 38,708 plateau forest imagery samples and 1187 handmade accurate plateau forest ground truth masks. We then propose an few-shot learning method for mapping plateau forests. The proposed method is conducted in two stages, including unsupervised feature extraction by leveraging domain knowledge, and model fine-tuning using limited ground truth data. The proposed few-shot learning method reached an F1-score of 84.23%, and outperformed the state-of-the-art object segmentation methods. The result proves the proposed few-shot learning model could help large-scale plateau forest monitoring. The dataset proposed in this paper will soon be available online for the public.

关键词:

large-scale plateau forest mapping high resolution satellite imagery Sanjiangyuan National Nature Reserve ZY-3 few-shot learning

作者机构:

  • [ 1 ] [Wei, Zhihao]Beijing Univ Technol, Fac Informat Technol, Beijing 100021, Peoples R China
  • [ 2 ] [Jia, Kebin]Beijing Univ Technol, Fac Informat Technol, Beijing 100021, Peoples R China
  • [ 3 ] [Liu, Pengyu]Beijing Univ Technol, Fac Informat Technol, Beijing 100021, Peoples R China
  • [ 4 ] [Wei, Zhihao]Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China
  • [ 5 ] [Jia, Kebin]Beijing Lab Adv Informat Network, Beijing 100021, Peoples R China
  • [ 6 ] [Liu, Pengyu]Beijing Lab Adv Informat Network, Beijing 100021, Peoples R China
  • [ 7 ] [Jia, Xiaowei]Univ Pittsburgh, Dept Comp Sci, Pittsburgh, PA 15260 USA
  • [ 8 ] [Ma, Ying]Qinghai Nationalities Univ, Inst Phys & Elect Informat Engn, Xining 810007, Peoples R China
  • [ 9 ] [Feng, Guilian]Qinghai Nationalities Univ, Inst Phys & Elect Informat Engn, Xining 810007, Peoples R China
  • [ 10 ] [Chen, Ting]Twenty First Century Aerosp Technol Co Ltd, Beijing 100096, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

REMOTE SENSING

年份: 2022

期: 2

卷: 14

5 . 0

JCR@2022

5 . 0 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:38

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:547/4933429
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司