收录:
摘要:
Human brain effective connectivity characterizes the causal effects of neural activities among different brain regions. Studies of brain effective connectivity networks (ECNs) for different populations contribute significantly to the understanding of the pathological mechanism associated with neuropsychiatric diseases and facilitate finding new brain network imaging markers for the early diagnosis and evaluation for the treatment of cerebral diseases. A deeper understanding of brain ECNs also greatly promotes brain-inspired artificial intelligence (AI) research in the context of brain-like neural networks and machine learning. Thus, how to picture and grasp deeper features of brain ECNs from functional magnetic resonance imaging (fMRI) data is currently an important and active research area of the human brain connectome. In this survey, we first show some typical applications and analyze existing challenging problems in learning brain ECNs from fMRI data. Second, we give a taxonomy of ECN learning methods from the perspective of computational science and describe some representative methods in each category. Third, we summarize commonly used evaluation metrics and conduct a performance comparison of several typical algorithms both on simulated and real datasets. Finally, we present the prospects and references for researchers engaged in learning ECNs.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN: 2162-237X
年份: 2021
期: 4
卷: 34
页码: 1879-1899
1 0 . 4 0 0
JCR@2022
ESI学科: COMPUTER SCIENCE;
ESI高被引阀值:87
JCR分区:1
归属院系: