• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Qi (Wang, Qi.) | Liu, Zhaoying (Liu, Zhaoying.) | Zhang, Ting (Zhang, Ting.) | Alasmary, Hisham (Alasmary, Hisham.) | Waqas, Muhammad (Waqas, Muhammad.) | Halim, Zahid (Halim, Zahid.) | Li, Yujian (Li, Yujian.)

收录:

EI Scopus SCIE

摘要:

Deep neural mapping support vector machine (DNMSVM) has achieved good results in numerous tasks by mapping the input from a low-dimensional space to a high-dimensional space and then using support vector machine for classification. However, it did not consider the connection of different spaces and increased the model parameters. To improve the classification performance while reducing the number of model parame-ters, we propose a deep Convolutional Cross-connected Kernel Mapping Support Vector Machine framework based on SelectDropout (CCKMSVM-SD). It consists of a feature extraction module and a classification module. The feature extraction module maps the data from low-dimensional to high-dimensional space by fusing the representations of dif-ferent dimensional spaces through convolutional layers with cross-connections. For some convolutional layers, we use the depthwise separable convolution to replace the original convolution to reduce the number of parameters. Besides, we use SelectDropout to improve its generalization capability. The classification module uses a soft margin support vector machine for classification. The results on three tasks with ten different datasets indi-cate that CCKMSVM-SD obtains higher classification accuracy than other models with fewer parameters, demonstrating its effectiveness.(c) 2023 Elsevier Inc. All rights reserved.

关键词:

SelectDropout Depth-wise separable convolution Cross-connected Convolutional neural network Support vector machine

作者机构:

  • [ 1 ] [Wang, Qi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Zhaoying]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Ting]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Yujian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Alasmary, Hisham]King Khalid Univ, Coll Comp Sci, Dept Comp Sci, Abha, Saudi Arabia
  • [ 6 ] [Alasmary, Hisham]King Khalid Univ, Informat Secur & Cybersecur Unit, Abha, Saudi Arabia
  • [ 7 ] [Waqas, Muhammad]Univ Bahrain, Coll Informat Technol, Comp Engn Dept, 32038, Zallaq, Bahrain
  • [ 8 ] [Waqas, Muhammad]Edith Cowan Univ, Sch Engn, Perth, WA 6027, Australia
  • [ 9 ] [Halim, Zahid]GIK Inst Engn Sci & Technol, Fac Comp Sci & Engn, Topi 23460, Pakistan
  • [ 10 ] [Li, Yujian]Guilin Univ Elect Technol, Sch Artificial Intelligence, Guilin 541004, Peoples R China

通讯作者信息:

  • [Zhang, Ting]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

来源 :

INFORMATION SCIENCES

ISSN: 0020-0255

年份: 2023

卷: 626

页码: 694-709

8 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次: 8

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:316/4510692
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司