Indexed by:
Abstract:
Organizing webpages into hot topics is one of the key steps to understand the trends from multi-modal web data. To handle this pressing problem, Poisson Deconvolution (PD), a state-of-the-art method, recently is proposed to rank the interestingness of web topics on a similarity graph. Nevertheless, in terms of scalability, PD optimized by expectation-maximization is not sufficiently efficient for a large-scale data set. In this paper, we develop a Stochastic Poisson Deconvolution (SPD) to deal with the large-scale web data sets. Experiments demonstrate the efficacy of the proposed approach in comparison with the state-of-the-art methods on two public data sets and one large-scale synthetic data set.
Keyword:
Reprint Author's Address:
Email:
Source :
MULTIMEDIA MODELING (MMM 2019), PT I
ISSN: 0302-9743
Year: 2019
Volume: 11295
Page: 590-602
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: