• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wen, Pengceng (Wen, Pengceng.) | Guan, Yu (Guan, Yu.) | Li, Jianqiang (Li, Jianqiang.) | Xu, Xi (Xu, Xi.) | Peng, Haoran (Peng, Haoran.) | Yang, Jijiang (Yang, Jijiang.) | Jia, Yanhe (Jia, Yanhe.) | Xie, Xianghui (Xie, Xianghui.) | Li, Minglei (Li, Minglei.) | Wang, Xiaoman (Wang, Xiaoman.) | Xin, Yue (Xin, Yue.) | He, Yuzhu (He, Yuzhu.)

收录:

CPCI-S EI Scopus

摘要:

Hydronephrosis is a common renal disease in children which can lead to a series of complications, and ultrasonography is a basic examination usually performed on suspected hydronephrosis patients. If we can use deep learning approaches to judge and grade the disease in the ultrasonic examination stage, we can save a lot of manpower, medical resources, money, and help the suffered patients. For the semantic segmentation of kidney ultrasound image, we designed an Attention-based Pyramid Scene Parsing Network (A-PSPNet), the core of which is the basic feature extraction network combining Convolutional Block Attention Module (CBAM) and pyramid analysis module. Experiments were carried out on a hydronephrosis dataset containing 1850 annotated ultrasound images, including the arrangement of attention units, statistical computing power, and comparison of the effectiveness between the benchmark and our proposed method. Our constructed model achieved better segmentation performance than benchmarks with only little extra overhead, which validated the lightweight and effectiveness of the model.

关键词:

作者机构:

  • [ 1 ] [Wen, Pengceng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Guan, Yu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Jianqiang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Xu, Xi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Peng, Haoran]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Yang, Jijiang]Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
  • [ 7 ] [Jia, Yanhe]Beijng Informat Sci & Technol Univ, Sch Econ & Management, Beijing 100192, Peoples R China
  • [ 8 ] [Xie, Xianghui]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Beijing 100045, Peoples R China
  • [ 9 ] [Li, Minglei]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Beijing 100045, Peoples R China
  • [ 10 ] [Wang, Xiaoman]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Beijing 100045, Peoples R China
  • [ 11 ] [Xin, Yue]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Beijing 100045, Peoples R China
  • [ 12 ] [He, Yuzhu]Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, Beijing 100045, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC)

ISSN: 1062-922X

年份: 2021

页码: 40-45

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:811/4290260
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司