• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jin, Fengyang (Jin, Fengyang.) | Li, Xiaoyan (Li, Xiaoyan.) (学者:李晓延) | Yao, Peng (Yao, Peng.)

收录:

EI Scopus PKU CSCD

摘要:

This study focuses on the Cu-Sn-Cu sandwich structure soldering, 0.06 MPa constant pressure. Different soldering temperatures and soldering times were selected based on the Cu-Sn binary phase diagram. After soldering according to different phase composition the solder joints can be divided into three types of residual Sn/Cu3Sn-Cu6Sn5-Cu3Sn/Cu-Cu3Sn-Cu. The relationship among shear strength of solder joints and three different phases compositions were researched by shear experiment of 1 mm/min loading rate and fracture morphology analysis. The results show that the shear strength of solder joints increases with the depletion of Sn and Cu6Sn5 in sequence. The shear strength of residual Sn solder joints, Cu3Sn-Cu6Sn5-Cu3Sn solder joints and Cu-Cu3Sn-Cu solder joints are 23.26, 33.59, 51.83 MPa, respectively. Based on the fracture morphology analysis, residual Sn solder joint fracture can distinguish the morphology of Sn/Cu6Sn5/Cu3Sn, indicating that the crack path through the Cu6Sn5 and Cu3Sn phases. In Cu3Sn-Cu6Sn5-Cu3Sn solder joint fracture, Cu6Sn5/Cu3Sn morphology was distinguished, crack path through the Cu3Sn phase. When only Cu3Sn phase was at solder joints, was Cu3Sn only Cu3Sn can be seen in fracture morphology of the soldering joints. © 2019, Editorial Board of Transactions of the China Welding Institution, Magazine Agency Welding. All right reserved.

关键词:

Binary alloys Copper alloys Cracks Fracture Integrated circuit interconnects Lead-free solders Morphology Soldered joints Soldering Ternary alloys Tin

作者机构:

  • [ 1 ] [Jin, Fengyang]College of Materials Science and Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Li, Xiaoyan]College of Materials Science and Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Yao, Peng]College of Materials Science and Engineering, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • 李晓延

    [li, xiaoyan]college of materials science and engineering, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Transactions of the China Welding Institution

ISSN: 0253-360X

年份: 2019

期: 2

卷: 40

页码: 58-63

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:3798/2927199
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司