• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bilal, Muhammad Atif (Bilal, Muhammad Atif.) | Ji, Yanju (Ji, Yanju.) | Wang, Yongzhi (Wang, Yongzhi.) | Akhter, Muhammad Pervez (Akhter, Muhammad Pervez.) | Yaqub, Muhammad (Yaqub, Muhammad.)

收录:

EI Scopus SCIE

摘要:

Earthquakes threaten people, homes, and infrastructure. Early warning systems provide prior warning of oncoming significant shaking to decrease seismic risk by providing location, magnitude, and depth information of the event. Their usefulness depends on how soon a strong shake begins after the warning. In this article, the authors implement a deep learning model for predicting earthquakes. This model is based on a graph convolutional neural network with batch normalization and attention mechanism techniques that can successfully predict the depth and magnitude of an earthquake event at any number of seismic stations in any number of locations. After preprocessing the waveform data, CNN extracts the feature map. Attention mechanism is used to focus on important features. The batch normalization technique takes place in batches for stable and faster training of the model by adding an extra layer. GNN with extracted features and event location information predicts the event information accurately. We test the proposed model on two datasets from Japan and Alaska, which have different seismic dynamics. The proposed model achieves 2.8 and 4.0 RMSE values in Alaska and Japan for magnitude prediction, and 2.87 and 2.66 RMSE values for depth prediction. Low RMSE values show that the proposed model significantly outperforms the three baseline models on both datasets to provide an accurate estimation of the depth and magnitude of small, medium, and large-magnitude events.

关键词:

earthquake prediction graph convolution network batch normalization attention layer the seismic network deep learning

作者机构:

  • [ 1 ] [Bilal, Muhammad Atif]Jilin Univ, Coll Instrumentat & Elect Engn, Changchun 130061, Peoples R China
  • [ 2 ] [Ji, Yanju]Jilin Univ, Coll Instrumentat & Elect Engn, Changchun 130061, Peoples R China
  • [ 3 ] [Wang, Yongzhi]Jilin Univ, Coll Geoexplorat Sci & Technol, Changchun 130061, Peoples R China
  • [ 4 ] [Wang, Yongzhi]Jilin Univ, Inst Integrated Informat Mineral Resources Predic, Changchun 130026, Peoples R China
  • [ 5 ] [Akhter, Muhammad Pervez]Riphah Int Univ, Riphah Coll Comp, Faisalabad Campus, Faisalabad 38000, Pakistan
  • [ 6 ] [Yaqub, Muhammad]Riphah Int Univ, Riphah Coll Comp, Faisalabad Campus, Faisalabad 38000, Pakistan
  • [ 7 ] [Yaqub, Muhammad]Beijing Univ Technol, Fac Informat Technol, Beijing 100021, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

SENSORS

年份: 2022

期: 17

卷: 22

3 . 9

JCR@2022

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:53

JCR分区:2

中科院分区:2

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:238/4897781
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司