• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Wenan (Wu, Wenan.) | Yang, Yongtao (Yang, Yongtao.) | Zheng, Hong (Zheng, Hong.) (学者:郑宏)

收录:

EI SCIE

摘要:

A mixed three-node triangular element with continuous nodal stresses (mixed T3-MINI-CNS) is presented for dynamics of porous media based on the three-variable u-w-p Biot model and the numerical manifold method (NMM). The displacement and velocity approximations are derived using the constrained and orthonormalized least-square (CO-LS) scheme, which possess continuous derivatives and Delta property at nodes. The pressure approximation takes linear piecewise interpolation. Relative to higher-order element, the mixed quadratic six-node triangle, mixed T3-MINI-CNS can model dynamic response of porous media more precisely with fewer unknowns, especially the short-term transient response. Moreover, mixed T3-MINI-CNS is immune from locking in both undrained and rigid skeleton limits and achieves more accurate pressure results than other characteristic locking-free elements. Based on NMM and u-w-p formulation, the most versatile three-node triangular mesh can always be used, avoiding difficulties in mesh generation. As fluid acceleration is involved, mixed T3-MINI-CNS is capable of totally predicting dynamic response of porous mixture, especially under rapid loading condition. In addition, reliability and precision of the time integration are assessed in terms of the energy balance condition. Through calculating benchmark problems, convergence, accuracy, and reliability of the mixed T3-MINI-CNS are thoroughly investigated and validated.

关键词:

Continuous nodal stresses Dynamic consolidation Numerical manifold method Three-variable Biot model Wave propagation

作者机构:

  • [ 1 ] [Wu, Wenan]Chinese Acad Sci, State Key Lab Geomech & Geotech Engn, Inst Rock & Soil Mech, Wuhan 430071, Peoples R China
  • [ 2 ] [Yang, Yongtao]Chinese Acad Sci, State Key Lab Geomech & Geotech Engn, Inst Rock & Soil Mech, Wuhan 430071, Peoples R China
  • [ 3 ] [Zheng, Hong]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Wu, Wenan]Univ Chinese Acad Sci, Beijing 100049, Peoples R China

通讯作者信息:

  • [Yang, Yongtao]Chinese Acad Sci, State Key Lab Geomech & Geotech Engn, Inst Rock & Soil Mech, Wuhan 430071, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS

ISSN: 0955-7997

年份: 2020

卷: 113

页码: 232-258

3 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:28

JCR分区:2

被引次数:

WoS核心集被引频次: 16

SCOPUS被引频次: 17

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1350/2910610
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司