• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tao, Qinghua (Tao, Qinghua.) | Xu, Jun (Xu, Jun.) | Li, Zhen (Li, Zhen.) | Xie, Na (Xie, Na.) | Wang, Shuning (Wang, Shuning.) | Li, Xiaoli (Li, Xiaoli.) (学者:李晓理) | Suykens, Johan A. K. (Suykens, Johan A. K..)

收录:

EI Scopus SCIE

摘要:

The adaptive hinging hyperplane (AHH) model is a popular piecewise linear representation with a generalized tree structure and has been successfully applied in dynamic system identification. In this article, we aim to construct the deep AHH (DAHH) model to extend and generalize the networking of AHH model for high-dimensional problems. The network structure of DAHH is determined through a forward growth, in which the activity ratio is introduced to select effective neurons and no connecting weights are involved between the layers. Then, all neurons in the DAHH network can be flexibly connected to the output in a skip-layer format, and only the corresponding weights are the parameters to optimize. With such a network framework, the backpropagation algorithm can be implemented in DAHH to efficiently tackle large-scale problems and the gradient vanishing problem is not encountered in the training of DAHH. In fact, the optimization problem of DAHH can maintain convexity with convex loss in the output layer, which brings natural advantages in optimization. Different from the existing neural networks, DAHH is easier to interpret, where neurons are connected sparsely and analysis of variance (ANOVA) decomposition can be applied, facilitating to revealing the interactions between variables. A theoretical analysis toward universal approximation ability and explicit domain partitions are also derived. Numerical experiments verify the effectiveness of the proposed DAHH.

关键词:

piecewise linear (PWL) Neurons Topology Adaptive systems Adaptive hinging hyperplanes (AHHs) analysis of variance (ANOVA) decomposition skip-layer connection domain partition Artificial neural networks Network topology Training Optimization

作者机构:

  • [ 1 ] [Tao, Qinghua]Katholieke Univ Leuven, STADIUS, ESAT, B-3001 Leuven, Belgium
  • [ 2 ] [Suykens, Johan A. K.]Katholieke Univ Leuven, STADIUS, ESAT, B-3001 Leuven, Belgium
  • [ 3 ] [Tao, Qinghua]Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
  • [ 4 ] [Wang, Shuning]Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
  • [ 5 ] [Xu, Jun]Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen 518055, Peoples R China
  • [ 6 ] [Li, Zhen]Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen 518055, Peoples R China
  • [ 7 ] [Xie, Na]Cent Univ Finance & Econ, Sch Management Sci & Engn, Beijing 100081, Peoples R China
  • [ 8 ] [Li, Xiaoli]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

ISSN: 2162-237X

年份: 2021

期: 11

卷: 33

页码: 6373-6387

1 0 . 4 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:332/4296748
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司