• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Ziping (He, Ziping.) | Xia, Kewen (Xia, Kewen.) | Ghamisi, Pedram (Ghamisi, Pedram.) | Hu, Yuhen (Hu, Yuhen.) | Fan, Shurui (Fan, Shurui.) | Zu, Baokai (Zu, Baokai.)

收录:

EI Scopus SCIE

摘要:

Generative adversarial networks (GANs) have achieved many excellent results in hyperspectral image (HSI) classification in recent years, as GANs can effectively solve the dilemma of limited training samples in HSI classification. However, due to the class imbalance problem of HSI data, GANs always associate minority-class samples with fake label. To address this issue, we first propose a semisupervised generative adversarial network incorporating a transformer, called HyperViTGAN. The proposed HyperViTGAN is designed with an external semisupervised classifier to avoid self-contradiction when the discriminator performs both classification and discrimination tasks. The generator and discriminator with skip connection are utilized to generate HSI patches by adversarial learning. The proposed HyperViTGAN captures semantic context and low-level textures to reduce the loss of critical information. In addition, the generalization ability of the HyperViTGAN is improved through the use of data augmentation. Experimental results on three well-known HSI datasets, Houston 2013, Indian Pines 2010, and Xuzhou, show that the proposed model achieves competitive HSI classification performance in comparison with the current state-of-the-art classification models.

关键词:

Generative adversarial network (GAN) transformer hyperspectral image (HSI) classification semisupervised learning

作者机构:

  • [ 1 ] [He, Ziping]Hebei Univ Technol, Sch Elect & Informat Engn, Tianjin 300401, Peoples R China
  • [ 2 ] [Xia, Kewen]Hebei Univ Technol, Sch Elect & Informat Engn, Tianjin 300401, Peoples R China
  • [ 3 ] [Fan, Shurui]Hebei Univ Technol, Sch Elect & Informat Engn, Tianjin 300401, Peoples R China
  • [ 4 ] [He, Ziping]Helmholtz Zentrum Dresden Rossendorf, Helmholtz Inst Freiberg Resource Technol, D-09599 Freiberg, Germany
  • [ 5 ] [Ghamisi, Pedram]Helmholtz Zentrum Dresden Rossendorf, Helmholtz Inst Freiberg Resource Technol, D-09599 Freiberg, Germany
  • [ 6 ] [Ghamisi, Pedram]Inst Adv Res Artificial Intelligence, A-1030 Vienna, Austria
  • [ 7 ] [Hu, Yuhen]Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
  • [ 8 ] [Zu, Baokai]Beijing Univ Technol, Fac Informat Technol, Beijing 100021, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

ISSN: 1939-1404

年份: 2022

卷: 15

页码: 6053-6068

5 . 5

JCR@2022

5 . 5 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:38

JCR分区:1

中科院分区:3

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 31

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:465/4951128
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司