收录:
摘要:
This study proposes the time-/event-triggered adaptive neural control strategies for the asymptotic tracking problem of a class of uncertain nonlinear systems with full-state constraints. First, we design a time-triggered strategy. The effect caused by the residuals of the estimation via radial basis function (RBF) neural networks (NNs), and the reasonable upper bounds on the first derivative of the reference signal and the derivative of each virtual control, can be eliminated by designing appropriate adaptive laws and utilizing the basic properties of RBF NNs. Moreover, the construction of the barrier Lyapunov functions (BLFs) in this work ensures the compliance of the full-state constraints and also holds the asymptotic output tracking performance. Then, based on the time-triggered strategy, we further design a relative threshold event-triggered strategy. The proposed event-triggered adaptive neural controller can solve the main control objective of this work, that is: 1) the full-state constraint requirements of the system are not violated and 2) the output signal asymptotically tracks the reference signal. Compared with the traditional method, the event-triggered strategy can improve the utilization of communication channels and resources and has greater practical significance. Finally, an example of single-link robot under the proposed two strategies illustrates the validity of the constructed controllers.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN: 2162-237X
年份: 2021
期: 11
卷: 33
页码: 6690-6700
1 0 . 4 0 0
JCR@2022
ESI学科: COMPUTER SCIENCE;
ESI高被引阀值:87
JCR分区:1
归属院系: