• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Jiaming (Zhang, Jiaming.) | Niu, Ben (Niu, Ben.) | Wang, Ding (Wang, Ding.) | Wang, Huanqing (Wang, Huanqing.) | Zhao, Ping (Zhao, Ping.) | Zong, Guangdeng (Zong, Guangdeng.)

收录:

EI Scopus SCIE

摘要:

This study proposes the time-/event-triggered adaptive neural control strategies for the asymptotic tracking problem of a class of uncertain nonlinear systems with full-state constraints. First, we design a time-triggered strategy. The effect caused by the residuals of the estimation via radial basis function (RBF) neural networks (NNs), and the reasonable upper bounds on the first derivative of the reference signal and the derivative of each virtual control, can be eliminated by designing appropriate adaptive laws and utilizing the basic properties of RBF NNs. Moreover, the construction of the barrier Lyapunov functions (BLFs) in this work ensures the compliance of the full-state constraints and also holds the asymptotic output tracking performance. Then, based on the time-triggered strategy, we further design a relative threshold event-triggered strategy. The proposed event-triggered adaptive neural controller can solve the main control objective of this work, that is: 1) the full-state constraint requirements of the system are not violated and 2) the output signal asymptotically tracks the reference signal. Compared with the traditional method, the event-triggered strategy can improve the utilization of communication channels and resources and has greater practical significance. Finally, an example of single-link robot under the proposed two strategies illustrates the validity of the constructed controllers.

关键词:

event-triggered control Backstepping Task analysis neural networks (NNs) Asymptotic tracking control Neurons uncertain nonlinear systems time- Control systems barrier functions Adaptive systems full-state constraints Nonlinear systems Artificial neural networks

作者机构:

  • [ 1 ] [Zhang, Jiaming]Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R China
  • [ 2 ] [Niu, Ben]Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R China
  • [ 3 ] [Zhao, Ping]Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R China
  • [ 4 ] [Wang, Ding]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Ding]Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
  • [ 6 ] [Wang, Huanqing]Bohai Univ, Sch Math & Phys, Jinzhou 121000, Peoples R China
  • [ 7 ] [Zong, Guangdeng]Qufu Normal Univ, Sch Engn, Rizhao 276826, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

ISSN: 2162-237X

年份: 2021

期: 11

卷: 33

页码: 6690-6700

1 0 . 4 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次: 32

SCOPUS被引频次: 35

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 9

归属院系:

在线人数/总访问数:647/4274409
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司