• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Wenjian (Wang, Wenjian.) | Duan, Lijuan (Duan, Lijuan.) (学者:段立娟) | Wang, Yuxi (Wang, Yuxi.) | En, Qing (En, Qing.) | Fan, Junsong (Fan, Junsong.) | Zhang, Zhaoxiang (Zhang, Zhaoxiang.)

收录:

CPCI-S EI Scopus

摘要:

Few-shot semantic segmentation intends to predict pixel-level categories using only a few labeled samples. Existing few-shot methods focus primarily on the categories sampled from the same distribution. Nevertheless, this assumption cannot always be ensured. The actual domain shift problem significantly reduces the performance of few-shot learning. To remedy this problem, we propose an interesting and challenging cross-domain few-shot semantic segmentation task, where the training and test tasks perform on different domains. Specifically, we first propose a meta-memory bank to improve the generalization of the segmentation network by bridging the domain gap between source and target domains. The meta-memory stores the intra-domain style information from source domain instances and transfers it to target samples. Subsequently, we adopt a new contrastive learning strategy to explore the knowledge of different categories during the training stage. The negative and positive pairs are obtained from the proposed memory-based style augmentation. Comprehensive experiments demonstrate that our proposed method achieves promising results on cross-domain few-shot semantic segmentation tasks on C000-20(i) , PASCAL-5(i), FSS-1000, and SHIM datasets.

关键词:

作者机构:

  • [ 1 ] [Wang, Wenjian]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Duan, Lijuan]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Wang, Wenjian]Beijing Key Lab Trusted Comp, Beijing, Peoples R China
  • [ 4 ] [Duan, Lijuan]Beijing Key Lab Trusted Comp, Beijing, Peoples R China
  • [ 5 ] [Wang, Wenjian]Natl Engn Lab Key Technol Informat Secur Level Pr, Beijing, Peoples R China
  • [ 6 ] [Duan, Lijuan]Natl Engn Lab Key Technol Informat Secur Level Pr, Beijing, Peoples R China
  • [ 7 ] [En, Qing]Carleton Univ, Sch Comp Sci, Ottawa, ON, Canada
  • [ 8 ] [Wang, Yuxi]HKISI CAS, Ctr Artificial Intelligence & Robot, Beijing, Peoples R China
  • [ 9 ] [Fan, Junsong]HKISI CAS, Ctr Artificial Intelligence & Robot, Beijing, Peoples R China
  • [ 10 ] [Zhang, Zhaoxiang]HKISI CAS, Ctr Artificial Intelligence & Robot, Beijing, Peoples R China
  • [ 11 ] [Zhang, Zhaoxiang]Chinese Acad Sci, NLPR, CASIA, UCAS,Inst Automat, Beijing, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022)

ISSN: 1063-6919

年份: 2022

页码: 7055-7064

被引次数:

WoS核心集被引频次: 20

SCOPUS被引频次: 27

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:73/4602252
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司