• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Jiaming (Zhang, Jiaming.) | Niu, Ben (Niu, Ben.) | Wang, Ding (Wang, Ding.) | Wang, Huanqing (Wang, Huanqing.) | Duan, Peiyong (Duan, Peiyong.) | Zong, Guangdeng (Zong, Guangdeng.)

收录:

EI Scopus SCIE

摘要:

In this work, a neural-networks (NNs)-based adaptive asymptotic tracking control scheme is presented for a class of uncertain nonstrict feedback nonlinear systems with time-varying full-state constraints. First, we construct a novel exponentially decaying nonlinear mapping to map the constrained system states to new system states without constraints. Instead of the traditional barrier Lyapunov function methods, the feasible conditions which require the virtual control signals satisfying the constraint requirements are removed. By employing the Nussbaum design method to eliminate the effect of unknown control gains, the general assumption about the signs of the unknown control gains is relaxed. Then, the nonstrict feedback form of the system can be pulled back to the strict feedback form through the basic properties of radial basis function NNs. Simultaneously, the intermediate control signals and the desired controller are constructed by the backstepping process and the Nussbaum design method. The designed controller can ensure that all signals in the whole closed-loop system are bounded without the violation of the constraints and hold the asymptotic tracking performance. In the end, a practical example about a brush dc motor driving a one-link robot manipulator is given to illustrate the effectiveness of the proposed design scheme.

关键词:

Backstepping Adaptive control nonstrict feedback structure Asymptotic tracking control neural networks (NN) Design methodology Fuzzy logic Nonlinear systems uncertain nonlinear system Artificial neural networks Time-varying systems nonlinear mapping (NM) time-varying full-state constraints

作者机构:

  • [ 1 ] [Zhang, Jiaming]Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R China
  • [ 2 ] [Niu, Ben]Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R China
  • [ 3 ] [Wang, Ding]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Ding]Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
  • [ 5 ] [Wang, Huanqing]Bohai Univ, Sch Math & Phys, Jinzhou 121000, Peoples R China
  • [ 6 ] [Duan, Peiyong]Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
  • [ 7 ] [Zong, Guangdeng]Qufu Normal Univ, Sch Engn, Rizhao 276826, Peoples R China

通讯作者信息:

  • [Niu, Ben]Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R China;;

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

ISSN: 2162-237X

年份: 2021

期: 2

卷: 34

页码: 999-1007

1 0 . 4 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次: 31

SCOPUS被引频次: 36

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

归属院系:

在线人数/总访问数:3045/4276886
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司