• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ping, Xu (Ping, Xu.) | Yang, Fubin (Yang, Fubin.) | Zhang, Hongguang (Zhang, Hongguang.) | Xing, Chengda (Xing, Chengda.) | Yu, Mingzhe (Yu, Mingzhe.) | Wang, Yan (Wang, Yan.)

收录:

EI Scopus SCIE

摘要:

Organic Rankine cycle (ORC) can improve the fuel efficiency of internal combustion (IC) engine. However, the dynamic characteristics of ORC system in driving conditions are not only affected by variable high-temperature waste heat source, but also have strong coupling correlation between operating parameters and performance. Under the superimposed influence, the performance of vehicle engine-ORC combined system has obvious nonlinearity and uncertainty. This paper first constructs a vehicle engine-ORC combined system model for the driving conditions. Based on different driving cycles, the combined system is verified. The influence of ORC system on engine performance in driving conditions is evaluated. The synergetic influence laws of operation parameters in driving conditions is systematically analyzed. Based on vehicle engine-ORC combined system for driving conditions model, simulation model with different coupling units and multi-objective optimization algorithm, this paper proposes an integrated multi-objective optimization framework of combined system with complex driving conditions. The real-time optimization of integrated system performance in driving conditions is realized. The trade-off and uncertainty correlation between combined system performance in driving conditions are analyzed. Finally, the improvement of IC engine performance by ORC system in driving conditions is quantitatively evaluated. The nonlinear optimization framework proposed in this paper can provide a practical solution for the analysis, evaluation and real-time optimization of vehicle engine-ORC combined system performance in driving conditions.

关键词:

Vehicle engine Sensitivity analysis Organic Rankine cycle Multi-objective optimization Driving cycles

作者机构:

  • [ 1 ] [Ping, Xu]Beijing Univ Technol, Fac Environm & Life, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 2 ] [Yang, Fubin]Beijing Univ Technol, Fac Environm & Life, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Hongguang]Beijing Univ Technol, Fac Environm & Life, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 4 ] [Xing, Chengda]Beijing Univ Technol, Fac Environm & Life, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 5 ] [Yu, Mingzhe]Beijing Univ Technol, Fac Environm & Life, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 6 ] [Wang, Yan]Beijing Univ Technol, Fac Environm & Life, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 7 ] [Yang, Fubin]Beijing Univ Technol, Beijing, Peoples R China

通讯作者信息:

  • [Yang, Fubin]Beijing Univ Technol, Beijing, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENERGY

ISSN: 0360-5442

年份: 2023

卷: 263

9 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次: 27

SCOPUS被引频次: 28

ESI高被引论文在榜: 1 展开所有

  • 2023-5

万方被引频次:

中文被引频次:

近30日浏览量: 7

归属院系:

在线人数/总访问数:2028/4275832
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司