• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Bo (Liu, Bo.) (学者:刘博) | Yao, Kelu (Yao, Kelu.) | Huang, Mengmeng (Huang, Mengmeng.) | Zhang, Jiahui (Zhang, Jiahui.) | Li, Yong (Li, Yong.) | Li, Rong (Li, Rong.)

收录:

CPCI-S EI Scopus

摘要:

Gastric cancer is a malignant neoplasm with a high mortality rate in the world. Nearly one million new cases occur each year. The most important measure to diagnose gastric cancer is the detection and treatment of diseases early. Gastric cancer detection is currently performed by pathologists reviewing large expanses of biological tissues, but this process is labor intensive and error-prone. In this paper, a framework for automatically detection of tumors in gastric pathology image (slide) has been proposed based on deep learning. A deep residual network with 50 layers is built by identity mapping on a dataset of pathology images. The proposed method makes the training of models easier and improves the generalization performance. Finally, the experimental results show that the F-score of our method achieves 96%. The research in auto-classification of gastric pathology images has great value for gastric cancer detection in clinical medicine.

关键词:

gastric cancer image recognition classification deep residual network

作者机构:

  • [ 1 ] [Liu, Bo]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Bo]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Yao, Kelu]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Huang, Mengmeng]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Jiahui]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Li, Yong]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Li, Rong]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

2018 IEEE 42ND ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC 2018), VOL 2

ISSN: 0730-3157

年份: 2018

页码: 408-412

被引次数:

WoS核心集被引频次: 13

SCOPUS被引频次: 24

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:312/4971420
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司