Indexed by:
Abstract:
Geometry and topology of decision regions are closely related with classification performance and robustness against adversarial attacks. In this paper, we use differential geometry to theoretically explore the geometrical and topological properties of decision regions produced by deep neural networks (DNNs). The goal is to obtain some geometrical and topological properties of decision boundaries for given DNN models, and provide some principled guidance to design and regularization of DNNs. First, we present the curvatures of decision boundaries in terms of network parameters, and give sufficient conditions on network parameters for producing flat or developable decision boundaries. Based on the Gauss-Bonnet-Chern theorem in differential geometry, we then propose a method to compute the Euler characteristics of compact decision boundaries, and verify it with experiments. (C) 2021 Elsevier B.V. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
THEORETICAL COMPUTER SCIENCE
ISSN: 0304-3975
Year: 2022
Volume: 908
Page: 64-75
1 . 1
JCR@2022
1 . 1 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:46
JCR Journal Grade:4
CAS Journal Grade:4
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: