• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lin, Lan (Lin, Lan.) | Wang, Jingxuan (Wang, Jingxuan.) | Fu, Zhenrong (Fu, Zhenrong.) | Wu, Xuetao (Wu, Xuetao.) | Wu, Shuicai (Wu, Shuicai.) (学者:吴水才)

收录:

EI PKU PubMed CSCD

摘要:

The human brain deteriorates as we age, and the rate and the trajectories of these changes significantly vary among brain regions and among individuals. Because neuroimaging data are potentially important indicators of individual's brain health, they are commonly used in brain age prediction. In this review, we summarize brain age prediction model from neuroimaging-based studies in the last ten years. The studies are categorized based on their image modalities and feature types. The results indicate that the prediction frameworks based on neuroimaging holds promise toward individualized brain age prediction. Finally, we addressed the challenges in brain age prediction and suggested some future research directions. Copyright © 2019 by Editorial Office of Journal of Biomedical Engineering.

关键词:

Neuroimaging Brain Forecasting Predictive analytics Learning systems

作者机构:

  • [ 1 ] [Lin, Lan]College of Life Science and Bio-engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Wang, Jingxuan]College of Life Science and Bio-engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Fu, Zhenrong]College of Life Science and Bio-engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Wu, Xuetao]College of Life Science and Bio-engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Wu, Shuicai]College of Life Science and Bio-engineering, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [lin, lan]college of life science and bio-engineering, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Biomedical Engineering

ISSN: 1001-5515

年份: 2019

期: 3

卷: 36

页码: 493-498

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:1987/4241494
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司