收录:
摘要:
To study the influence of near-fault ground motion with directivity effect on curved girder bridges, a whole physical model of curved girder bridge with the scale ratio of 1:10 was designed and manufactured, the ground motions in forward region (FR), middle region (MR), and backward region (BR) were selected, and seismic simulation shaking table test was carried out. Experimental results show that the seismic response of the curved bridge under the action of FR ground motion and MR ground motion was obviously higher than that of BR ground motion. In the case of unidirectional input, the structural response was greater under MR ground motion, while in bidirectional input, the structural response was related to the relative position of the curved bridge and the rupture direction. When the curved bridge was perpendicular to the rupture direction and the unidirectional input, the main girder rotated along the fixed pier. The rotational effect of the main girder under FR ground motion and MR ground motion was more obvious than that under BR ground motion in bidirectional input. The amplification effect of pier tangential displacement under FR ground motion and MR ground motion was greater than that of pier radial displacement. When the curved bridge was perpendicular to the rupture direction, the main girder was easier to rotate, making the displacement responses of the bearing and the beam end larger at the low pier. Therefore, in seismic design, rational analysis should be performed to avoid bearing shedding or girder falling. © 2019, Editorial Board of Journal of Harbin Institute of Technology. All right reserved.
关键词:
通讯作者信息:
电子邮件地址: