• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ren, Guoqing (Ren, Guoqing.) | Zhang, Yong (Zhang, Yong.) (学者:张勇) | Liu, Hao (Liu, Hao.) | Zhang, Ke (Zhang, Ke.) | Hu, Yongli (Hu, Yongli.) (学者:胡永利)

收录:

EI Scopus

摘要:

The lane-changing model is a hot spot in the field of traffic research, and there are already a lot of free lane-changing model established mathematical statistical methods or machine learning algorithm. However, these models don’t consider the driver’s driving style to the free lane-changing, and the accuracy of these models is low. This paper considers the driver’s driving style and proposes a new free lane-changing model based on machine learning. The new model splits the sample data into three driving styles: cautious, stable and radical. This paper selects the most effective multilayer perceptron model by comparing different machine learning methods based on the NGSIM trajectory data. In the analysis of the final accuracy of this paper, it can be seen that the new model has a great improvement in accuracy. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.

关键词:

K-means clustering Learning algorithms Multilayers Multilayer neural networks Learning systems Machine learning

作者机构:

  • [ 1 ] [Ren, Guoqing]Beijing University of Technology, Beijing, China
  • [ 2 ] [Zhang, Yong]Beijing University of Technology, Beijing, China
  • [ 3 ] [Zhang, Yong]Beijing Transportation Information Center, Beijing, China
  • [ 4 ] [Liu, Hao]Beijing Transportation Information Center, Beijing, China
  • [ 5 ] [Zhang, Ke]Beijing Transportation Operations Coordination Center, Beijing, China
  • [ 6 ] [Hu, Yongli]Beijing University of Technology, Beijing, China

通讯作者信息:

  • 张勇

    [zhang, yong]beijing university of technology, beijing, china;;[zhang, yong]beijing transportation information center, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

International Journal of Intelligent Transportation Systems Research

ISSN: 1348-8503

年份: 2019

期: 3

卷: 17

页码: 181-189

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 38

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:1159/4225792
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司